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3 Universitätsrechenzentrum, Otto-von-Guericke Universität Magdeburg, POB 4120,
39016 Magdeburg, Germany

E-mail: damian.farnell@manchester.ac.uk

Received 11 May 2009, in final form 22 July 2009
Published 8 September 2009
Online at stacks.iop.org/JPhysCM/21/406002

Abstract
We apply the coupled cluster method (CCM) in order to study the ground-state properties of the
(unfrustrated) square-lattice and (frustrated) triangular-lattice spin-half Heisenberg
antiferromagnets in the presence of external magnetic fields. Approximate methods are difficult
to apply to the triangular-lattice antiferromagnet because of frustration, and so, for example, the
quantum Monte Carlo (QMC) method suffers from the ‘sign problem’. Results for this model in
the presence of magnetic field are rarer than those for the square-lattice system. Here we
determine and solve the basic CCM equations by using the localized approximation scheme
commonly referred to as the ‘LSUBm’ approximation scheme and we carry out high-order
calculations by using intensive computational methods. We calculate the ground-state energy,
the uniform susceptibility, the total (lattice) magnetization and the local (sublattice)
magnetizations as a function of the magnetic field strength. Our results for the lattice
magnetization of the square-lattice case compare well to the results from QMC approaches for
all values of the applied external magnetic field. We find a value for the magnetic susceptibility
of χ = 0.070 for the square-lattice antiferromagnet, which is also in agreement with the results
from other approximate methods (e.g., χ = 0.0669 obtained via the QMC approach). Our
estimate for the range of the extent of the (M/Ms =) 1

3 magnetization plateau for the
triangular-lattice antiferromagnet is 1.37 < λ < 2.15, which is in good agreement with results
from spin-wave theory (1.248 < λ < 2.145) and exact diagonalizations (1.38 < λ < 2.16).
Our results therefore support those from exact diagonalizations that indicate that the plateau
begins at a higher value of λ than that suggested by spin-wave theory (SWT). The CCM value
for the in-plane magnetic susceptibility per site is χ = 0.065, which is below the result of SWT
(evaluated to order 1/S) of χSWT = 0.0794. Higher-order calculations are thus suggested for
both SWT and CCM LSUBm calculations in order to determine the value of χ for the triangular
lattice conclusively.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Low-dimensional quantum magnets provide a difficult chal-
lenge to the theoretical physicist because of their strong
quantum fluctuations and their complex dynamics [1, 2]. These

effects lead to rich physics that include novel quantum phases,
as well as quantum phase transitions between semi-classical
magnetically ordered phases and magnetically disordered
quantum phases, see, e.g., [3].
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An interesting field of research is that of the behaviour
of quantum magnetic systems in the presence of external
magnetic fields, see, e.g. [4–8]. This topic has become more
important by the discovery of exotic parts of the magnetization
curve of quantum antiferromagnets, such as plateaux and
jumps [4, 7–19] in the lattice magnetization with respect
to the externally applied field. Indeed, the presence of
these plateaux and jumps may sometimes be linked purely to
quantum effects because they are not observed in equivalent
classical models at T = 0 [14, 20–22]. Clearly, the
behaviour of quantum magnetic materials in the presence
of external magnetic fields is an important aspect in their
subsequent technological exploitation. Several methods such
as quantum Monte Carlo method (QMC), field theories, exact
diagonalization of finite systems, spin-wave techniques and
strong-coupling approximation have been used [4–8] to study
these systems. However, each method has its own specific
limitations; for instance, the QMC is restricted (essentially) to
unfrustrated systems because of the infamous ‘sign problem’.

In this paper we focus on the behaviour of quantum
antiferromagnets as they react to externally imposed magnetic
fields by a method of quantum many-body theory called the
coupled cluster method (CCM) [23–32]. The CCM has been
used previously in order to treat a wide range of strongly
interacting quantum systems. In particular, the CCM is not
restricted, in principle, by the spatial dimensionality of the
problem or by the presence of competition between bonds,
i.e., in frustrated quantum spin systems. A remarkable
advance in the accuracy of the method for a localized
approximation scheme called the LSUBm scheme has been
afforded by the use of ‘high-order’ CCM via computer-
algebraic implementations [26–29]. This computer code
developed by Farnell and Schulenburg [33] is very flexible
in terms of the range of underlying crystallographic lattice,
spin quantum number, and types of Hamiltonian that may be
studied. Furthermore, recent advances to this code now allow
‘generalized expectation values’ (with respect to one-spin and
two-spin operators) and (separately) excited-state properties
to be evaluated to high orders of approximation. Indeed,
we employ the new code for the generalized expectation
values to determine the lattice magnetization and individual
sublattice magnetizations of quantum antiferromagnets in
external magnetic fields.

The relevant Hamiltonian for an antiferromagnet in an
external field is defined by

H =
∑

〈i, j〉
si · s j − λ

∑

i

sz
i , (1)

where the index i runs over all lattice sites on the lattice. The
expression 〈i, j〉 indicates a sum over all nearest-neighbour
pairs, although each pair is counted once and once only. The
strength of the applied external magnetic field is given by λ.

The quantum ground states at λ = 0 of all of the
cases considered here are semi-classically ordered (albeit
the classical order is reduced by quantum fluctuations) [2].
Classically, nearest-neighbours align in antiparallel directions
for the bipartite antiferromagnets such as the antiferromagnet
on the square lattice and at angles of 120◦ to each other for the

Heisenberg antiferromagnet on the (tripartite) triangular lattice
at λ = 0. In the presence of an externally applied magnetic
field (λ > 0), the classical picture indicates that the spins will
cant at various angles and that at a ‘saturation’ value of λ = λs

(square: λs = 4; triangle; λs = 4.5) all spins align with
the field. The magnetization saturates to a maximum value
M = Ms at this point.

However, we remark that the behaviour of quan-
tum spin-half square-lattice antiferromagnet in a magnetic
field [4, 7, 34–40] is (essentially) the same as that of the
classical model, albeit modified by quantum fluctuations.
Second-order (and third-order) spin-wave theory [36–38] thus
provides a good approximation to the behaviour of this
model. Exact diagonalizations and QMC simulations [7, 39]
also provide good results for this case. Very recently,
in [39, 40], the field dependence of the low-energy descriptors
of this model (i.e., spin stiffness, spin-wave velocity, and
magnetic susceptibility) have been investigated using exact
diagonalizations and spin-wave theory. A review of the
properties of the spin-half square-lattice antiferromagnet is
given by [41].

By contrast, the behaviour of the quantum case for spin-
half triangular-lattice antiferromagnet [4, 7–11, 15, 42, 43] is
much different to that of the classical model. In particular,
a magnetization plateau is observed at M/Ms = 1

3 over
a finite region of λ. The range of this plateau has been
estimated by spin-wave theory [10, 11] to be given by 1.248 <

λ < 2.145, whereas exact diagonalizations [4, 7–9] predict
a region given by 1.38 < λ < 2.16. We note that the
application of the QMC method (leading to precise results
for bipartite lattices) to the case of the triangular is severely
limited by the ‘sign problem’ due to frustration. The available
spin-wave and exact-diagonalization data for the triangular
lattice seem to be less accurate and complementary results
are desirable. Furthermore, recent experimental evidence [19]
for the magnetic material Cs2CuBr4 suggests that a series of
plateaux might exist at values of M/Ms equal to 1/3, 1/2, 5/9
and 2/3. The authors of this paper suggest that this might be
due to unit cells of differing size for the different plateaux, e.g.,
each having an overall magnetization of 1/2, and furthermore
that theory has thus far only predicted the first of these at
1/3. However, the treatment of these possible higher plateau is
beyond the scope of this paper.

The main goal of our paper is to explain how the CCM can
be used to investigate the magnetization process of quantum
antiferromagnets and to provide detailed CCM results for the
spin-half Heisenberg antiferromagnets on the square and the
triangular lattices. The CCM has previously been applied with
much success to the subject of quantum magnetic systems at
zero temperature. The CCM provides accurate results even in
the presence of very strong frustration. In particular, the use
of computer-algebraic implementations [26–29] of the CCM
for quantum systems of infinite numbers of particles has been
found to be very effective with respect to these spin–lattice
problems. Here we present a brief description of the CCM
formalism and its application via computational methods to
the subject of quantum spin models. We then describe the
application of the method to the spin-half Heisenberg model
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for the square and triangular lattices at zero temperature in the
presence of an external magnetic field. We present our results
and then discuss the conclusions of this research.

2. The coupled cluster method (CCM)

As the CCM has been discussed extensively elsewhere
(see [23–32]), we do not consider the methodology in depth
here. In particular, the interested reader should note that the use
of computer-algebraic implementations has been considered
in [26–29]. However, it is still important to remark here
that the exact ket and bra ground-state energy eigenvectors,
|�〉 and 〈�̃|, of a general many-body system described by a
Hamiltonian H , are given by

H |�〉 = Eg|�〉; 〈�̃|H = Eg〈�̃|. (2)

The ket and bra states are parametrized within the CCM as
follows:

|�〉 = eS|�〉; S =
∑

I �=0

SI C+
I ,

〈�̃| = 〈�|S̃e−S; S̃ = 1 +
∑

I �=0

S̃I C−
I .

(3)

One of the most important features of the CCM is that one
uses a single model or reference state |�〉 that is normalized.
This, in turn, leads to a normalization condition for the ground-
state bra and ket wavefunctions (〈�̃|�〉 ≡ 〈�|�〉 = 1).
The model state is required to have the property of being
a cyclic vector with respect to two well-defined Abelian
subalgebras of multi-configurational creation operators {C+

I }
and their Hermitian-adjoint destruction counterparts {C−

I ≡
(C+

I )†}. For spin systems the model state |�〉 typically
can be chosen as an independent-spin product state and the
corresponding operators {C+

I } can be expressed as a product
of a set of spin lowering operators, see below and for more
details also [26–29].

The CCM formalism is exact in the limit of inclusion
of all possible multi-spin cluster correlations within S and S̃,
although this is usually impossible to achieve practically. It is
therefore necessary to utilize various approximation schemes
within S and S̃. Here we use the localized LSUBm scheme, in
which all multi-spin correlations over distinct locales on the
lattice defined by m or fewer contiguous sites are retained.
This approximation scheme has been successfully applied to
determine the ground-state phases of quantum spin systems,
see e.g. [27, 29]. The CCM is a bi-variational formulation in
which the bra and ket states are parametrized separately. This
means that the ket and bra states are not explicitly constrained
to be Hermitian conjugates. However, an advantage of this
approach is that the Goldstone linked cluster theorem is obeyed
and so results may be found in the infinite-lattice limit N → ∞
from the outset. The important Hellmann–Feynman theorem is
also obeyed at all levels of approximation. The ket-state and
bra-state equations are obtained using the following formulae,

〈�|C−
I e−S H eS|�〉 = 0, ∀I �= 0; (4)

〈�|S̃e−S[H, C+
I ]eS|�〉 = 0, ∀I �= 0. (5)

The method in which equations (4) and (5) are solved has
been discussed extensively elsewhere [23–32]. However, we
remark here that the computational method for solution of
the CCM problem may be broken into three parts. The first
task is, namely, to enumerate the fundamental set of CCM
clusters for a given level of approximation. Secondly, we must
determine the ket-state equations in terms of the CCM ket-
state correlation coefficients by pattern matching those clusters
C−

I in the fundamental set to term in e−S H eS. Once we have
determined the ket-state equations, the bra-state equations may
be determined directly. Finally, we solve the coupled CCM
equations for the ket- and bra-state correlation coefficients,
e.g., by using the Newton–Raphson method for the ket-state
equations. Expectation values such as the lattice magnetization
may be obtained after we have solved for both the ket and
bra states. Again, we refer the interested reader to [26–29]
for more details of the practicalities of carrying out CCM
calculations to high order.

Here we use the classical ground states of these systems
of the Heisenberg model in an external magnetic field as the
model state. However, the magnitude of the characteristic
canting angles in the quantum model (i.e., the angle between
the local directions of the spins and the external magnetic
field) may be different from the corresponding classical value.
Hence, we do not choose the classical result for those angles.
Indeed, we consider the angles as a free parameters in the CCM
calculation, which has to be determined by minimization of the
CCM ground-state energy.

The ground state of the classical system at zero external
field (λ = 0) has nearest neighbouring spins aligning in
opposite directions for the bipartite lattices (e.g., the square
lattice) and at angles of 120◦ to each other for the triangular
lattice. Classically, the spins react to an external magnetic
field by changing their alignment to that of the direction of
the field. This is shown in figure 1. For the bipartite lattices,
the spins thus cant at an angle of θ and π − θ to the x-
axis, as is shown in figure 1(a). By contrast, for the tripartite
triangular lattice and related frustrated lattices one ought to
distinguish between an applied field within the plane defined
by the 120◦ planar state and a field perpendicular to this plane.
Although on the classical level both cases are energetically
equivalent [10, 20–22], thermal or quantum fluctuations favour
the planar configuration [10, 20–22]. Therefore in the present
paper we restrict our considerations to planar states and
a corresponding magnetic field applied within this plane.
Following [10, 15] we employ three different model states for
the tripartite triangular lattice. The first such model state is one
in which two spins on the A and B sublattices point generally
in the direction of the external magnetic field. However, they
form angles α and π − α to the x-axis, as shown in the model
state I of figure 1(b). The remaining spins on the C sublattice
point in a direction antiparallel to the applied external field.
The second model state II of figure 1(c) for the triangular
lattice has two spins on the A and B sublattices that align
completely with the external magnetic field and the remaining
spins that align antiparallel to the external magnetic field. The
final model state III has two spins on the A and B sublattices
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Figure 1. The model states used in the CCM calculations for the
Heisenberg model in an external magnetic field. (a) The bipartite
lattices. Spins on the A and B sublattices make angles θ to the
x-axis. (b) The first model state for the triangular lattice (model state
I). Spins on the A and B sublattices make angles α to the x-axis.
Spins on the C sublattice point downwards. (c) The second model
state for the triangular lattice (model state II). Spins on the A and B
sublattices point upwards. Spins on the C sublattice point
downwards. (d) The third model state for the triangular lattice
(model state III). Spins on the A and B sublattices make angles α to
the x-axis. Spins on the C make an angle β to the x-axis. (Model
state II is also a limiting case of model states I and III.)

that form an angle α to the x-axis and another spin on the C
sublattice that forms a (initially negative) angle of β to the x-
axis, as is also shown in figure 1(d). Model state II is clearly a
limiting case of both model states, I and III. (For example, we
obtain model state II from model state III by setting α = π/2
and β = −π/2.)

In order to simplify the problem, we now rotate the local
coordinate axes in the spin space so that all spins appear
notationally to point in the downwards z-direction. For a spin
making an angle of θ to the x-axis, the rotation of the local
axes is given by,

sx → −sx sin(θ) + szcos(θ), sy → sy

sz → −sx cos(θ) − szsin(θ).
(6)

The spins in the model state |�〉 now all appear to
point downwards, i.e. |�〉 = | · · · ↓↓↓↓ · · ·〉. The
corresponding creation {C+

I } are then given by {C+
I } =

s+
i , s+

i s+
j , s+

i s+
j s+

k , . . ., where the indices i, j, k, . . . denote
arbitrary lattice sites. Furthermore, the Hamiltonian for the
bipartite lattices in the rotated coordinate frame (i.e., with spins
on the A sublattice making an angle θ to the negative x-axis
and spins on the B sublattice making an angle θ to the positive
x-axis as shown in figure 1) is now given by

H =
∑

〈i→ j〉
{− 1

4 (1 + cos(2θ))(s+
i s+

j + s−
i s−

j )

+ 1
4 (1 − cos(2θ))(s+

i s−
j + s−

i s+
j )

Figure 2. The bond directionality of the Heisenberg Hamiltonian
after rotation of the local coordinate axes in the spin space. The
directions of the bonds are indicated by the arrows placed on the
square lattice. The two-site unit cell is also shown in dotted lines.

− cos(2θ)sz
i sz

j + 1
2 sin(2θ)(sz

i s+
j + sz

i s−
j )

− 1
2 sin(2θ)(s+

i sz
j + s−

i sz
j )}

+ λ sin(θ)
∑

i

sz
i − λ

2
cos(θ)

∑

iA

(s+
iA

+ s−
iA

)

+ λ

2
cos(θ)

∑

iB

(s+
iB

+ s−
iB
). (7)

We note that the sign in equation (7) for those terms for szs+
and szs− for a bond going from i to j has an opposite sign for
those same terms for a bond going from j to i . This is called
a ‘bond directionality’ and is indicated in the above equation
by the arrow in the symbol 〈i → j〉. An illustrative example
of bond directionality in the Hamiltonian for the square-lattice
case is shown in figure 2. We note also that iA runs over all
A sublattice sites, iB runs over all B sublattice sites, and i runs
over all lattice sites. The translational symmetry of equation (7)
compared to the original problem has also been reduced. We
must include two sites in the unit cell, as is also shown in
figure 2.

Similar calculations may be carried out for the triangular
lattice. We have three new Hamiltonians after rotation of the
local spin axes of the spins for all three model states I, II, and
III in figures 1(b)–(d) for the triangular lattice case such that all
spins again appear to point downwards. The Hamiltonian for
model state I, figure 1(b), for the triangular lattice is:

H =
∑

〈iA→iB〉
{− 1

4 (1 + cos(2α))(s+
iA

s+
iB

+ s−
iA

s−
iB
)

+ 1
4 (1 − cos(2α))(s+

iA
s−

iB
+ s−

iA
s+

iB
)

− cos(2α)sz
iA

sz
iB

+ 1
2 sin(2α)(sz

iA
s+

iB
+ sz

iA
s−

iB
)

4



J. Phys.: Condens. Matter 21 (2009) 406002 D J J Farnell et al

− 1
2 sin(2α)(s+

iA
sz

iB
+ s−

iA
sz

iB
)}

+
∑

〈iB,C→iC,A〉
{− 1

4 (1 + sin(α))(s+
iB,C

s+
iC,A

+ s−
iB,C

s−
iC,A

)

+ 1
4 (1 − sin(α))(s+

iB,C
s−

iC,A
+ s−

iB,C
s+

iC,A
)

− sin(α)sz
iB,C

sz
iC,A

+ 1
2 cos(α)(sz

iB,C
s+

iC,A
+ sz

iB,C
s−

iC,A
)

− 1
2 cos(α)(s+

iB,C
sz

iC,A
+ s−

iB,C
sz

iC,A
)}

− λ
∑

iC

sz
iC

+ λ sin(α)

( ∑

iA

sz
iA

+
∑

iB

sz
iB

)

− λ

2
cos(α)

∑

iA

(s+
iA

+ s−
iA

) + λ

2
cos(α)

∑

iB

(s+
iB

+ s−
iB
), (8)

where the sum 〈iA → iB〉 goes from sublattice A to sublattice
B (and with directionality). Note that 〈iB,C → iC,A〉 indicates a
sum that goes from sublattice B to sublattice C and sublattice C
to sublattice A, respectively (and with directionality). A similar
treatment may be carried out for the model state III, figure 1(d).
Hence, if those spins on the A and B sublattices make an angle
α to the x-axis and those spins on the C sublattice make an
angle β to the x-axis and employing the rotation of the local
spin axes of equation (6), we find that,

H =
∑

〈iC→iA,B〉
{ 1

4 (−1 + cos(α − β))(s+
iC

s+
iA,B

+ s−
iC

s−
iA,B

)

+ 1
4 (1 + cos(α − β))(s+

iC
s−

iA,B
+ s−

iC
s+

iA,B
)

+ cos(α − β)sz
iC

sz
iA,B

+ 1
2 sin(α − β)(s+

iC
sz

iA,B
+ s−

iC
sz

iA,B
)

− 1
2 sin(α − β)(sz

iC
s+

iA,B
+ sz

iC
s−

iA,B
)}

+
∑

〈iA,iB〉
{ 1

2 (s
+
iA

s−
iB

+ s−
iA

s+
iB
) + sz

iA
sz

iB
}

+ λ sin(α)

( ∑

iA

sz
iA

+
∑

iB

sz
iB

)
+ λ sin(β)

∑

iC

sz
iC

+ λ

2
cos(α)

{∑

iA

(s+
iA

+ s−
iA

) +
∑

iB

(s+
iB

+ s−
iB
)

}

+ λ

2
cos(β)

∑

iC

(s+
iC

+ s−
iC
), (9)

where the sum 〈iC → iA,B〉 goes from sublattice C to
sublattices A and B (with directionality) and 〈iA, iB〉 goes over
each bond connecting the A and B sublattices, but counting
each one once only (and without directionality). We note that
we have three sites in the unit cell for all of the models states
used for the triangular lattice antiferromagnet.

Note that in addition to the model states presented above,
spin liquids such as valence-bond crystal states may be treated
via the CCM is by using a dimerized or plaquette (etc) as
relevant model state. A corresponding matrix algebra [25]
is then used with respect to this state. However, a simpler
approach is now also available that relies on finding special
solutions of the CCM equations for the Néel-type model states
used here [32]. These allow us to treat via existing high-
order formalism and computer code, for example, spontaneous
symmetry breaking in the spin-half one-dimensional J1–J2

(Majumdar–Ghosh) model [32]. The CCM is thus not
restricted purely to semi-classical systems.

We consider the angles as free parameters in the CCM
calculation. They are determined by direct minimization of the
CCM ground-state energy. This was achieved computationally
at a given level of LSUBm approximation, and a minimum
ground-state energy with respect to these canting angles was
also found computationally for a given fixed value of λ. There
was only one angle for the square-lattice antiferromagnet (and
for model state I for the triangular lattice) and there were two
such angles for model state III for the triangular lattice. The
next value of λ was then determined incrementally and the
minimization process of the energy with respect to the canting
angles repeated. The fact that we had to minimize the ground-
state energy with respect to such angles at each value of λ

made the CCM calculations much more costly in terms of
computing time required than the equivalent situations at zero
external magnetic field, which requires no such minimization.
Furthermore, we see that the Hamiltonians of equations (7)–
(9) do not conserve the quantity sz

T ≡ ∑
i sz

i = 0, which
is preserved for the square-lattice antiferromagnet at λ =
0. For these reasons, CCM calculations in the presence of
external magnetic fields are more challenging than their zero-
field counterparts.

A final point is that the inclusion of the CCM SUB1
terms of form S1 ≡ Si1 s+

i in the ground ket and bra states
is also equivalent to a rotation of the local spin axes [23]. For
example, for the spin-half system, we note that (s+

i )2|�〉 = 0
and so we can prove that eS1 |�〉 = 
i (1 + Si1 s+

i )|�〉. This
produces a mixture of ‘up’ and ‘down’ spins at each site,
which may be thought of (as may be seen from equation (6)
above, for example) as the same as a rotation of local spin
axes. Hence, we conclude that SUB1 is equivalent to a
rotation of the axes. Previous calculations for Heisenberg
antiferromagnets in external magnetic fields [23] made the
explicit assumption that the correlation coefficients of the
SUB1 terms may be set to zero, and we make the same
explicit assumption here. We minimize the ground-state energy
explicitly with respect to the angles in our model state. Note
that we go to much higher orders of LSUBm approximation
than those calculations presented in [23].

To investigate the magnetization process in antiferromag-
nets we have to consider the total lattice magnetization M
along the direction of the magnetic field. This quantity (in
the initial coordinate frame prior to rotation of the local spin
axes) is defined by M = 1

Ns 〈
∑

i sz
i 〉 = 1

Ns 〈�̃| ∑i sz
i |�〉 (s is

the spin quantum number which is s = 1/2 throughout this
paper). In the rotated coordinate frame (and in which all of the
spins point appear ‘mathematically’ to downwards), the lattice
magnetization for the bipartite lattices is now given by

M = − sin(θ)

Ns

∑

i

〈�̃|sz
i |�〉 − cos(θ)

2Ns

∑

iA

〈�̃|s+
iA

+ s−
iA

|�〉

+ cos(θ)

2Ns

∑

iB

〈�̃|s+
iB

+ s−
iB
|�〉, (10)

where, again, iA runs over all A sublattice sites, iB runs over
all B sublattice sites, and i runs over all lattice sites. We are
able to determine readily the lattice magnetization once the ket-
and bra-state equations have been solved for a given value of
λ. Furthermore, similar expressions to equation (10) may be
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Figure 3. Results for the ground-state energy per site Eg/N of the
spin-half square-lattice Heisenberg antiferromagnet in dependence
on an external magnetic field of strength λ. Note that the curves for
LSUB4, LSUB6, LSUB8 almost coincide.

obtained for the lattice magnetization for the triangular lattice
for model states I, II, III, figures 1(b)–(d). We note that the
magnetization found on the three sublattices may become non-
equivalent in a magnetic field for the triangular-lattice case.
Indeed, for the triangular lattice, the expression for the lattice
magnetization aligned in the direction of the applied magnetic
field on the individual sublattices (denoted, MA, MB, and MC)
in terms of the global axes prior to rotation of the local spin
axes is given by

MA,B,C = 1

NA,B,C s

∑

iA,B,C

〈�̃|sz
iA,B,C

|�〉, (11)

where the index iA runs over all NA sites on sublattice A, the
index iB runs over all NB sites on sublattice B, and the index
iC runs over all NC sites on sublattice C. Clearly, we see that
N = NA + NB + NC and that M = (MA + MB + MC)/3.

3. Results

Now we present and discuss the results for the two models
under consideration calculated by the CCM as illustrated
above. We start with the spin-half square-lattice Heisenberg
antiferromagnet. The ground-state energy in dependence of
this model is shown in figure 3. The CCM results converge
rapidly with increasing LSUBm level of approximation. As
seen in previous CCM calculations [27], the ground-state
energy in the limit of vanishing external field (λ = 0) is
approximated well. The interested reader is referred to [27]
for a more detailed discussion of these results. We also find
that the exact result for the saturation field M = Ms at λs = 4
is also reproduced. At this point the spins all lie in the direction
of the external field.

The results for the lattice magnetization are shown in
figure 4. There is a considerable difference between the results
for the spin-half quantum model and the classical straight-line
behaviour (i.e., MClassical = 1

4λ). Clearly, this difference is
because of quantum effects. It is also obvious from figure 4
that the magnetization of the quantum model is below that

Figure 4. Results for the total lattice magnetization M of the
spin-half square-lattice Heisenberg antiferromagnet in the presence
of an external magnetic field of strength λ compared to results of
QMC [7]. Note that the curves for LSUB4, LSUB6, LSUB8 almost
coincide.

Figure 5. Results for the canting angle θ/π obtained for the model
state for the spin-half square-lattice Heisenberg antiferromagnet (see
figure 1(a)) in the presence of an external magnetic field of strength
λ. Note that the curves for LSUB4, LSUB6, LSUB8 almost coincide.

of the classical magnetization in the region 0 < λ < λs.
Again we note that the LSUBm results appear to converge
with increasing m for all values of λ. For example, the
difference between the LSUB6 and LSUB8 results for the
lattice magnetization is less than 2 × 10−3 for all values of
λ, and it is impossible to be detected by eye in figure 4. From
figure 4 it is also evident that the CCM results for the lattice
magnetization are in excellent agreement with the results of
QMC [7], which can be considered as the most accurate results
available.

In addition to the energy and the magnetization we can
also present results for the canting angle θ (cf figure 1)
of the quantum model, see figure 5. Again, there is a
noticeable difference between the values for the classical and
the quantum angle. This difference first increases with λ

up to about λ ≈ 3.5. Beyond λ ≈ 3.5 the quantum
angle very rapidly approaches the saturation value θs =
π/2.
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Figure 6. LSUBm results for the zero-field uniform susceptibility
χ(λ → 0) for the spin-half square-lattice Heisenberg
antiferromagnet (see figure 1(a)) with m = {2, 4, 6, 8, 10} and the
polynomial fit according to χ(m) = c0 + c1/m + c2/m2.

In the next step the CCM results for the ground-
state energy and the lattice magnetization in dependence on
magnetic field can be used to calculate the uniform magnetic
susceptibility, given by

χ ≡ 1

2

dM

dλ
= − 1

N

d2 Eg

dλ2
. (12)

Note that factor of 1
2 in 1

2
dM
dλ

is due to definition of M in
the interval [0, 1]. Note further that we consider here χ as
susceptibility per site4. For the concrete calculation of χ we
have used the second derivative of the energy. To check the
accuracy for low fields we have also determined χ numerically
via direct determination from M by using dM

dλ
. We found

that 1
2

dM
dλ

and 1
N

d2 Eg

dλ2 agree to at least six decimal places of
precision.

The zero-field uniform susceptibility χ(λ → 0), the
ground-state energy, the sublattice magnetization, the spin
stiffness, and the spin-wave velocity constitute the fundamental
parameter set that determines the low-energy physics of
magnetic systems. The results for the ground-state energy,
the sublattice magnetization, the spin stiffness for the square-
lattice Heisenberg antiferromagnet at λ = 0 have been
calculated by the CCM previously. The interested reader is
referred to [27, 30, 31] for more details. However, CCM
results for the susceptibility χ were not determined by these
earlier calculations. Here we find that χ = 0.085 96, 0.079 15,
0.076 50, 0.074 98, and 0.073 88 for the LSUB2, LSUB4,
LSUB6, LSUB8, and LSUB10 approximations, respectively.
Since the LSUBm approximation becomes exact for m → ∞,
it is useful to extrapolate the ‘raw’ LSUBm data to m →
∞. Meanwhile there is much empirical experience how to
extrapolate CCM LSUBm data for physical quantities such as
the spin stiffness [30, 31] and ‘generalized’ susceptibilities [31]
which are also related to a second derivative of the ground
energy Eg. Hence, we use the same extrapolation rule for

4 χ is sometimes defined per volume, see e.g. [42]. Although this factor is
unity for the square lattice, it yields a different factor of 2/

√
3 for the triangular

lattice.

Figure 7. Susceptibility χ , see equation (12), and the quotient M/2λ
in dependence on the magnetic field λ the for the spin-half
square-lattice Heisenberg antiferromagnet. Note that the M/2λ
curves for LSUB4, LSUB6, LSUB8 almost coincide.

the zero-field uniform susceptibility that has previously been
found to give good results for the spin stiffness and also for
‘generalized’ susceptibilities [30, 31] given by χ(m) = c0 +
c1/m + c2/m2. We see from figure 6 that this rule provides a
good method of extrapolation of our data. The corresponding
extrapolation then yields values for the susceptibility of χ =
0.0700(6). (The number in brackets indicate the standard
deviation.) This result is in reasonable agreement with data
obtained by other methods, e.g. QMC (χ = 0.0669(7)) [35],
series expansion (χ = 0.0659(10)) [36], linear spin-wave
theory (χ = 0.056 11) [34], second-order spin-wave theory
(χ = 0.064 26) [38], and third-order spin-wave theory (χ =
0.062 91) [37].

The field dependence of χ is also of experimental interest,
see e.g. [18, 44–46]. We present LSUB4, LSUB6, and LSUB8
data for the field dependence of χ in figure 7. We note
that the magnetization divided by the applied external field is
often considered in experimental studies. Hence, results for
M/2λ are given also in figure 7. For the sake of comparison,
the classical value χclas = 1/8 is also shown in this figure
and we remark that this value is clearly independent of λ.
From figure 7 it is obvious that χ and M/2λ agree well
with each other up to about λ = 0.4 = λs/10. The
difference between results of the LSUB8 approximation and
the classical result is about 4% at λ = 0.4. However, these
two sets of results begin to deviate significantly for larger
λ. Hence, the quantity M/2λ is a good approximation for
χ for magnetic fields used in real experiments for systems
with large saturation fields λs, and not for systems with low
λs. We observe that χ increases with λ as we move away
from the zero-field point, λ = 0. Similar increases in χ with
the external field have been observed experimentally, e.g., for
the quasi-two-dimensional antiferromagnet Ba2CuGe2O7 [44].
Moreover, these results are in agreement with recent results
obtained by exact diagonalizations, QMC simulations, and
spin-wave theory [39, 40]. As seen for these other methods, the
susceptibility is near the constant classical value for magnetic
fields 1.5 � λ � 3.5, although it starts rapidly to increase
approaching the saturation field. Finally, weak oscillations
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Figure 8. Results for the ground-state energy per site Eg/N of the
spin-half triangular-lattice Heisenberg antiferromagnet in the
presence of an external magnetic field of strength λ. Note that the
results for LSUB4, LSUB6, LSUB8 are clearly converging rapidly
for all values of λ.

are seen for 1.5 � λ � 3.5, although these are believed
to be artefacts of CCM LSUBm approximation. We note
that the number of oscillations increases are we increase
the LSUBm approximation level, although their amplitude
decreases markedly. In the limit, m → ∞, it is expected that
these oscillations will disappear entirely.

We conclude from all of these results that the CCM
provides precise results for the behaviour of the spin-
half square-lattice quantum antiferromagnet in an external
magnetic field. However, we see also from these results that the
classical picture is essentially correct. Quantum mechanical
effects modify, but do not change, the essential physics that
occur in this unfrustrated quantum spin system.

We now consider the spin-half antiferromagnet on the
triangular lattice. However, the situation is more complicated
here because we have three sublattices in this case. As
discussed above, we employ therefore the model states I, II,
III shown in figures 1(b)–(d). The computational effort of
the CCM calculations presented here for the model state III
to very high orders is very great because we also need to
find the minimum of the energy with respect to two canting
angles, namely α and β . The CCM calculation for the
model state III in LSUB8 approximation was performed on a
Beowulf cluster using 110 cores (Intel XEON 3 GHz CPU).
On this computer the running time for one data point was
approximately 2 days. The CCM has been shown to be
fully competitive with the results of other methods at the
levels of approximation currently available to use using parallel
computer methods (currently: a maximum of 1000 CPUs in
parallel). The interested reader is referred, e.g., to [26–31]
for detailed comparisons of CCM results to the best of other
methods.

The results for the ground-state energy are shown in
figure 8. We note that the results for the model state with
lowest energy are shown only as a function of λ in figure 8.
Thus, results of model state I only are presented for small
values of the applied magnetic field strength λ and results
of model state III only are presented for higher values of λ

Figure 9. Results for the total lattice magnetization M of the
spin-half triangular-lattice Heisenberg antiferromagnet in the
presence of an external magnetic field of strength λ. CCM results are
compared to those results of exact diagonalizations [7]. The arrows
illustrate the actual spin directions. We use model state I for λ � λ1

and we use model state III for λ � λ2 (see figure 1). Both model
states give identical results within the plateau λ1 � λ � λ2.

near to λs. The results of both model states coincide in the
intermediate regime. Again, these LSUBm series of results are
found to converge rapidly with increasingly levels of LSUBm
approximation over all values of the external field parameter
λ. As may also be observed in figure 8, there is also a
large reduction in the ground-state energy of the CCM results
compared to the classical results for the energy (except in the
trivial limit λ → λs = 4.5).

The results for the total lattice magnetization are shown in
figure 9. The LSUBm results are again seen to converge rapidly
for increasing m. However, there is a radical departure from
the classical straight-line behaviour (i.e. MClassical = 2

9λ) in
this case. Thus, we find that the quantum model deviates from
the linear relationship between M and λ. The most prominent
feature of our CCM results is the plateau in the M versus λ

curve at M/Ms = 1
3 . Note that the plateau corresponds to

the ‘straight’ part of the curve in the Eg(λ) curve shown in
figure 8. Note further that this plateau is well known and
has been found by other approximate methods [4, 7–10, 15].
The ground state of the quantum system over the finite, non-
zero range of λ for the plateau region has ordering of the
form shown in model state II of figure 1(c). Importantly, this
is an example of when quantum fluctuations favour collinear
ordering (so called ‘order from disorder’ phenomenon, see
e.g. [47–49]). This plateau state of model state II is observed
only at a single point classically, namely, at λ = 1.5. The
classical ground state is given by model state II in figure 1(c)
only at this point, see also [20–22]. Indeed, states I, II and III
are equivalent classically at the point λ = 1.5. The values
for the starting (λ1) and the end point (λ2) of the plateau
state calculated within different LSUBm approximations are
shown in table 1. The most accurate values are provided
by the LSUB8 approximation, namely, that λ1 ≈ 1.37 and
λ2 ≈ 2.15. These results may therefore serve as the CCM
estimate for the plateau width. We note that the results for λ1

and λ2 for even and odd values of m ought to converge to the
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Figure 10. Results for the sublattice magnetization Mγ (γ = {A, B, C}) on individual sublattices A and B (left) and C (right) of the spin-half
triangular-lattice Heisenberg antiferromagnet in the presence of an external magnetic field of strength λ. (Note that MA = MB for all λ.)

Figure 11. Results for the angle α/π (left) and β/π (right) in the model state for the spin-half triangular-lattice Heisenberg antiferromagnet
in the presence of an external magnetic field of strength λ. The arrows illustrate the actual spin directions.

same values in this limit. Our estimate for the range of the
plateau is in also reasonable agreement with those results of
spin-wave theory [10] and exact diagonalizations [7], which
both predict a similar width for the plateau with respect to the
applied external magnetic field. However, we note that spin-
wave theory was carried out only to order 1/S for the triangular
lattice antiferromagnet in an external field. We believe that
higher orders than 1/S for spin-wave theory would provide
better correspondence to those results of ED and CCM results
cited here regarding the range of the plateau. The phenomenon
of ‘order from disorder’ in which quantum fluctuations tend to
favour colinear states has studied extensively elsewhere, e.g.,
[47, 48]. We note that the plateau state (uud) is colinear in
the present case, and so our results are another example of this
phenomenon. We have shown here that quantum fluctuations
stabilize the (uud) state over other states that classically would
have had lower energy in the plateau region.

We are able also to calculate the (sub)lattice magnetization
(i.e., with respect to the z-direction in the original unrotated
spin axes) for the individual sublattices, namely, MA, MB and
MC given by equation (11), by using the CCM and as a function
of λ. As far as we are aware, these quantities have never before
been presented for this model. The results for MA, MB and
MC are now presented in figure 10. Once again, we see a
radical shift in the quantum solution from the classical result.
Interestingly, MC appears to decrease before approaching the
plateau at λ = λ1, while MA = MB increase monotonically

Table 1. CCM results for the width of the magnetization plateau for
the spin-half Heisenberg antiferromagnet on the triangular lattice.

λ1 λ2

LSUB4 1.312 2.241
LSUB5 1.370 2.030
LSUB6 1.357 2.185
LSUB7 1.375 2.105
LSUB8 1.370 2.145
SWT [10] 1.248 2.145
Exact diagonalizations [7] 1.38 2.16

with λ up to λ1. On the other hand, MA, MB decrease with
magnetic field in the region λ2 < λ � 2.8 above the plateau,
while MC increases monotonically with λ up to λs.

We discuss next the canting angles α and β in the model
states I, II, III (see figures 1(a)–(c)) shown in figure 11. Note
again that to the best of our knowledge data for the angles
have not been presented previously by other authors. A
strong difference between the results of the classical system
and those results of the quantum system is again obvious, in
particular, in the plateau region where in the quantum model
α and β are constant but both angles change rapidly for the
classical model. We see that the results for both α and β vary
continuously, although not smoothly, for all values of λ. There
is no sudden discontinuity in the solution for the angles as was
reported, e.g., for spiral phases of some frustrated quantum
spin models. Note that above the plateau the angle α does
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Figure 12. LSUBm results for the zero-field uniform susceptibilities
χ(λ → 0) for the spin-half triangular-lattice Heisenberg
antiferromagnet with m = {2, 4, 6, 8} and the polynomial fit
according to χ(m) = c0 + c1/m + c2/m2.

not vary monotonously with field. Rather it first increases to
α > π/2 reaching at maximum at about λ ∼ 3.2. Approaching
the saturation then α rapidly decreases to α = π/2. As far
as we aware, no such equivalent experimental results exist for
the sublattice magnetizations or tilting angles. We recommend
therefore that experimental investigations of these aspects of
the magnetization with external field also be carried out.

For the zero-field uniform susceptibility χ(λ → 0), see
equation (12), we obtain χ = 0.113 88, 0.085 68, 0.082 00,
and 0.073 78 for the LSUBm approximation with m = 2, 4, 6,
and 8. In addition, we can also calculate the individual
response of the sublattices on the magnetic field, i.e. χA,B,C =
1
6

dMA,B,C

dλ
. Due to the relation M = (MA+MB+MC)/3 we have

χ = χA + χB + χC. Again we can extrapolate the data for the
susceptibilities to m → ∞ using χ(m) = c0 + c1/m + c2/m2.
The corresponding extrapolation then yields χ = 0.065(23).
(The number in brackets indicate the standard deviation.) We
see from figure 12 that this procedure is a reasonable method
of extrapolation of the data for the triangular lattice, although
it is not as good as for the square lattice. This is demonstrated
by the magnitudes of the estimated standard deviations for the
extrapolated values of χ for the square and triangular lattices
(of order approximately 10−3 and 10−2, respectively). We see
from figure 12 that the main contribution to χ comes from the
sublattices A and B. That is not surprising, since for the model
state I, see figure 1(b), the direction of the magnetization on
the sublattice C is fixed, whereas the spins on sublattices A
and B are rotated towards the field direction. Indeed, we find
that χA,B = 0.0245(54) and χC = 0.016(13) by extrapolating
the susceptibilities on the different sublattices separately (see
figure 12). This analysis leads again to an overall value for
χ(=χA + χB + χC) of χ = 0.065. We can compare this result
with χ = 0.0794 obtained with spin-wave theory [10, 42].
(We remark that this value of χ in [42] was referred to as χ⊥
in this paper and furthermore that it was defined per volume.)
Although the magnitudes of χ for the extrapolated CCM value
and the spin-wave result agree, the difference between them
is still obviously quite large. We believe that this difference
might be attributed to a somewhat less reliable extrapolation

Figure 13. Susceptibility χ , see equation (12), and the quotient
M/2λ in dependence on the magnetic field λ the for the spin-half
triangular-lattice Heisenberg antiferromagnet.

(shown clearly in figure 12) than that presented for the square
lattice above. However, we should note also that the spin-wave
theory calculations of [42] were only ever carried out to order
1/S. (By contrast, the spin-wave theory calculations for the
square lattice were carried out to order 1/S2 [37].) Hence, both
higher-order spin-wave results as well as higher-order CCM-
LSUBm results are recommended in order to establish a more
accurate figure for χ for the triangular-lattice case and, thus, to
resolve this difference.

Again we mention that the zero-field uniform suscepti-
bility χ(λ → 0), together with the ground-state energy, the
sublattice magnetization, the spin stiffness, and the spin-
wave velocity constitute the fundamental parameter set that
determines the low-energy physics of magnetic systems.
Corresponding CCM results for the ground-state energy, the
sublattice magnetization, the spin stiffness for the triangular-
lattice Heisenberg antiferromagnet at λ = 0 can be found
in [26, 30].

As for the square-lattice case above, we also present
results at the LSUB4 and LSUB6 levels of approximation for
the field dependence of χ in figure 13. (Note that we have
LSUB8 data for χ only for small fields due to the enormous
computational effort of carrying out this calculation.) Again
we compare χ(λ) with M/(2λ) which is often determined in
experiments and also with the classical value χclas = 1/9 that
is independent of λ.

From figure 13 it is obvious that χ and M/2λ agree well
with each other up to about λ = λs/10 (the difference is
about 7% at λ = 0.45), but deviate significantly for larger λ.
As for the square lattice χ grows with λ starting from zero
field up to the bottom of the plateau at λ1. In the plateau
region χ is zero indicating a finite excitation gap about the
plateau ground state. Approaching the plateau from below
or from above χ(λ) exhibits a sharp peak. Such peaks at
the end of the plateau are indeed observed in experiments on
an antiferromagnet on the triangular lattice, see e.g. figures 9
and 10 in [15]. Between the top of the plateau at λ2 and the
saturation at λs we find a broad region where the susceptibility
is small χ ≈ 0.1. Approaching the saturation χ again becomes
large. The oscillations seen for λ ∼ 3.5 seem to be an artefact
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of CCM-LSUBm approximation. However, we expect again
that the amplitude of oscillation will decrease with increasing
approximation level and would disappear entirely in the limit
m → ∞.

4. Conclusions

In this paper we describe how the coupled cluster method
(CCM) may be applied in order to calculate the behaviour
of quantum antiferromagnetic systems in the presence of
external magnetic fields. We have determined the ground-
state energy, the total lattice magnetization as well as sublattice
magnetizations and the uniform susceptibility for the spin-
half Heisenberg antiferromagnets on the square lattice and
the triangular lattice by using the CCM to high orders of
approximation. We showed that high-order CCM calculations
give reasonable results for these quantities over all values of
the magnetic field strength λ for both lattices. For example,
the CCM result for the lattice magnetization for the square
lattice compare well to QMC and spin-wave theory results for
all values of the magnetic field strength. Our result for the
uniform susceptibility of χ = 0.070 for the square lattice is
in reasonable agreement with those results of other methods
(e.g., χ = 0.0669(7) via QMC). Again, we believe that even
closer agreement would occur with high orders of LSUBm
approximation.

CCM results presented here for the total lattice
magnetization for the triangular lattice show the characteristic
magnetization plateau at M/Ms = 1

3 also seen in other
studies [4, 7, 8, 10]. The width of this plateau was estimated
by us to be given by 1.37 � λ � 2.15. This result was found
to be in good agreement with results of spin-wave theory [10]
(1.248 < λ < 2.145) and exact diagonalizations [4, 7–9]
(1.38 < λ < 2.16). Our results therefore support those of
exact diagonalizations that indicate that the plateau begins at a
higher value of λ than that suggested by spin-wave theory. In
addition, we provide results for sublattice magnetizations MA,
MB, and MC evaluated on the individual sublattices A, B, and
C of the triangular lattice that allows a better understanding
of the magnetization process of the triangular lattice. As far
as we are aware, this is the first time that results for the
individual sublattice magnetizations (and angles) have been
presented. Our result for the longitudinal uniform low-field
susceptibility χ = 0.065 compares to the result of result of
spin-wave theory (χ = 0.0794), i.e. there is quite a large
difference between the spin-wave and the CCM result. Hence,
higher-order approximations for both SWT and CCM LSUBm
calculations and/or alternative approaches are recommended in
order to obtain more reliable values for χ for the triangular-
lattice case. The susceptibility χ(λ) in dependence on the
magnetic field λ shows for the triangular lattice characteristic
sharp peaks at the bottom and the top of the plateau which
may be used as indicators in experiments for a magnetization
plateau.
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[2] Schollwöck U, Richter J, Farnell D J J and Bishop R F (ed)
2004 Quantum Magnetism (Springer Lecture Notes in
Physics vol 645) (Berlin: Springer)

[3] Sachdev S 1999 Quantum Phase Transitions (Cambridge:
Cambridge University Press)

Sachdev S 2004 Quantum Magnetism (Springer Lecture Notes
in Physics vol 645) ed U Schollwöck, J Richter,
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